首页> 外文OA文献 >An augmented Young-Laplace model of an evaporating meniscus in a micro-channel with high heat flux
【2h】

An augmented Young-Laplace model of an evaporating meniscus in a micro-channel with high heat flux

机译:高通量微通道内蒸发弯月面的增强Young-Laplace模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High flux evaporations from a steady meniscus formed in a 2 micron channel is modeled using the augmented Young-Laplace equation. The heat flux is found to be a function of the long range van der Waals dispersion force which represents interfacial conditions between heptane and various substrates. Heat fluxes of (1.3-1.6) x 10(exp 6) W/m(exp 2) based on the width of the channel are obtained for heptane completely wetting the substrate at 100 C. Small channels are used to obtain these large fluxes. Even though the real contact angle is 0 deg, the apparent contact angle is found to vary between 24.8 deg and 25.6 deg. The apparent contact angle, which represents viscous losses near the contact line, has a large effect on the heat flow rate because of its effect on capillary suction and the area of the meniscus. The interfacial heat flux is modeled using kinetic theory for the evaporation rate. The superheated state depends on the temperature and the pressure of the liquid phase. The liquid pressure differs from the pressure of the vapor phase due to capillarity and long range van der Waals dispersion forces which are relevant in the ultra think film formed at the leading edge of the meniscus. Important pressure gradients in the thin film cause a substantial apparent contact angle for a complete wetting system. The temperature of the liquid is related to the evaporation rate and to the substrate temperature through the steady heat conduction equation. Conduction in the liquid phase is calculated using finite element analysis except in the vicinity of the thin film. A lubrication theory solution for the thin film is combined with the finite element analysis by the method of matched asymptotic expansions.
机译:使用增强的Young-Laplace方程对在2微米通道中形成的稳定弯月面的高通量蒸发进行建模。发现热通量是范德华分散力的长函数,范德华分散力代表庚烷与各种基材之间的界面条件。对于庚烷在100°C时完全润湿衬底,获得基于通道宽度的(1.3-1.6)x 10(exp 6)W / m(exp 2)的热通量。使用小通道获得这些大通量。即使实际接触角为0度,表观接触角仍在24.8度和25.6度之间变化。由于表观接触角对毛细吸力和弯液面面积有影响,因此表观接触角对接触线附近的粘性损失有很大影响。界面热通量是使用动力学理论为蒸发速率建模的。过热状态取决于液相的温度和压力。由于毛细作用和长程范德华分散力,液体压力与气相的压力不同,这与在弯液面前缘形成的超薄薄膜有关。薄膜中重要的压力梯度会导致整个润湿系统产生明显的表观接触角。液体的温度通过稳定的热传导方程与蒸发速率和基板温度相关。除了薄膜附近以外,使用有限元分析来计算液相中的电导率。通过匹配渐近膨胀法,将薄膜的润滑理论解与有限元分析相结合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号